A new analysis of a Martian rock that meteorite hunters plucked from an
Antarctic ice field 30 years ago this month reveals a record of the
planet's climate billions of years ago, back when water likely washed
across its surface and any life that ever formed there might have
emerged.
Scientists from the University of California, San Diego, NASA and the
Smithsonian Institution report detailed measurements of minerals within
the meteorite in the early online edition of the Proceedings of the National Academy of Sciences this week.
"Minerals within the meteorite hold a snapshot of the planet's
ancient chemistry, of interactions between water and atmosphere," said
Robina Shaheen, a project scientist at UC San Diego and the lead author
of the report.
The unlovely stone, which fell to Earth 13 thousand years ago, looked
a lot like a potato and has quite a history. Designated ALH84001, it is
the oldest meteorite we have from Mars, a chunk of solidified magma
from a volcano that erupted four billion years ago. Since then something
liquid, probably water, seeped through pores in the rock and deposited
globules of carbonates and other minerals.
The carbonates vary subtly depending on the sources of their carbon
and oxygen atoms. Both carbon and oxygen occur in heavier and lighter
versions, or isotopes. The relative abundances of isotopes forms a
chemical signature that careful analysis and sensitive measurements can
uncover.
Mars's atmosphere is mostly carbon dioxide but contains some ozone.
The balance of oxygen isotopes within ozone are strikingly weird with
enrichment of heavy isotopes through a physical chemical phenomenon
first described by co-author Mark Thiemens, a professor of chemistry at
UC San Diego, and colleagues 25 years ago.
"When ozone reacts with carbon dioxide in the atmosphere, it
transfers its isotopic weirdness to the new molecule," said Shaheen, who
investigated this process of oxygen isotope exchange as a graduate
student at the University of Heidelberg in Germany. When carbon dioxide
reacts with water to make carbonates, the isotopic signature continues
to be preserved.
The degree of isotopic weirdness in the carbonates reflects how much
water and ozone was present when they formed. It's a record of climate
3.9 billion years ago, locked in a stable mineral. The more water, the
smaller the weird ozone signal.
This team measured a pronounced ozone signal in the carbonates within
the meteorite, suggesting that although Mars had water back then, vast
oceans were unlikely. Instead, the early Martian landscape probably held
smaller seas.
"What's also new is our simultaneous measurements of carbon isotopes
on the same samples. The mix of carbon isotopes suggest that the
different minerals within the meteorite had separate origins," Shaheen
said. "They tell us the story of the chemical and isotopic compositions
of the atmospheric carbon dioxide."
ALH84001 held tiny tubes of carbonate that some scientists saw as
potential evidence of microbial life, though a biological origin for the
structures has been discarded. On December 16, NASA announced another
potential whiff of Martian life in the form of methane sniffed by the
rover Curiosity.
Carbonates can be deposited by living things that scavenge the
minerals to build their skeletons, but that is not the case for the
minerals measured by this team. "The carbonate we see is not from living
things," Shaheen said. "It has anomalous oxygen isotopes that tell us
this carbonate is abiotic."
By measuring the isotopes in multiple ways, the chemists found
carbonates depleted in carbon-13 and enriched in oxygen-18. That is,
Mars's atmosphere in this era, a period of great bombardment, had much
less carbon-13 than it does today.
The change in relative abundances of carbon and oxygen isotopes may
have occurred through extensive loss of Martian atmosphere. A thicker
atmosphere would likely have been required for liquid water to flow on
the planet's chilly surface.
"We now have a much deeper and specific insight into the earliest
oxygen-water system in the solar system," Thiemens said. "The question
that remains is when did planets, Earth and Mars, get water, and in the
case of Mars, where did it go? We've made great progress, but still deep
mysteries remain."
No comments:
Post a Comment