An increase in human-made carbon dioxide in the atmosphere could
initiate a chain reaction between plants and microorganisms that would
unsettle one of the largest carbon reservoirs on the planet -- soil.
Researchers based at Princeton University report in the journal Nature Climate Change
that the carbon in soil -- which contains twice the amount of carbon in
all plants and Earth's atmosphere combined -- could become increasingly
volatile as people add more carbon dioxide to the atmosphere, largely
because of increased plant growth. The researchers developed the first
computer model to show at a global scale the complex interaction between
carbon, plants and soil, which includes numerous bacteria, fungi,
minerals and carbon compounds that respond in complex ways to
temperature, moisture and the carbon that plants contribute to soil.
Although a greenhouse gas and pollutant, carbon dioxide also supports
plant growth. As trees and other vegetation flourish in a carbon
dioxide-rich future, their roots could stimulate microbial activity in
soil that in turn accelerates the decomposition of soil carbon and its
release into the atmosphere as carbon dioxide, the researchers found.
This effect counters current key projections regarding Earth's future
carbon cycle, particularly that greater plant growth could offset
carbon dioxide emissions as flora take up more of the gas, said first
author Benjamin Sulman, who conducted the modeling work as a
postdoctoral researcher at the Princeton Environmental Institute.
"You should not count on getting more carbon storage in the soil just
because tree growth is increasing," said Sulman, who is now a
postdoctoral researcher at Indiana University.
On the other hand, microbial activity initiated by root growth could
lock carbon onto mineral particles and protect it from decomposition,
which would increase long-term storage of carbon in soils, the
researchers report.
Whether carbon emissions from soil rise or fall, the researchers'
model depicts an intricate soil-carbon system that contrasts starkly
with existing models that portray soil as a simple carbon repository,
Sulman said. An oversimplified perception of the soil carbon cycle has
left scientists with a glaring uncertainty as to whether soil would help
mitigate future carbon dioxide levels -- or make them worse, Sulman
said.
"The goal was to take that very simple model and add some of the most
important missing processes," Sulman said. "The main interactions
between roots and soil are important and shouldn't be ignored. Root
growth and activity are such important drivers of what goes on in the
soil, and knowing what the roots are doing could be an important part of
understanding what the soil will be doing."
The researchers' soil-carbon cycle model has been integrated into the
global land model used for climate simulations by the National Oceanic
and Atmospheric Administration's (NOAA) Geophysical Fluid Dynamics
Laboratory (GFDL) located on Princeton's Forrestal Campus.
No comments:
Post a Comment